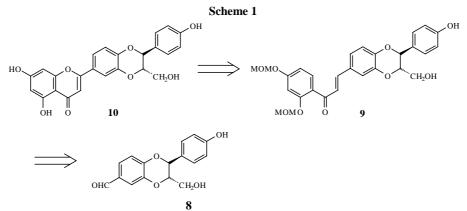
Stereoselective Synthesis of 2-(4-Hydroxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-aldehyde—The Key Intermediate of Sinaiticin

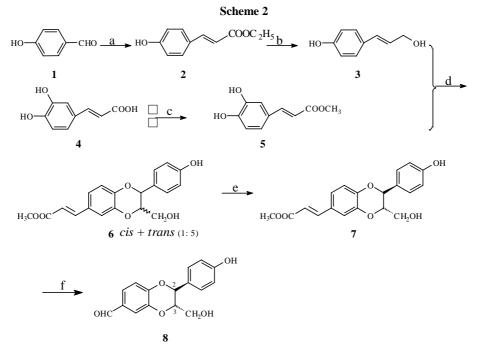
Xue Gong SHE, Wen Xin GU, Hua WANG, Xin Fu PAN*


Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: 2-(4-Hydroxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-aldehyde 8, the key intermediate of sinaiticin 10, was synthesized in 6 steps from caffeic acid 4 and 4-hydroxybenzaldehyde 1, the coupling reaction is the key step.

Keywords: 2-(4-Hydroxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-aldehyde, key intermediate, sinaiticin, synthesis.

Sinaiticin **10**, a flavonolignan, was isolated from *sinaiticum* leaves and had inhibitory P-388 cell activity¹. This type of natural products have shown various bioactivity and received considerable attention from synthetic chemists ².


We wish to report a stereoselective total synthesis of sinaiticin from readily available starting materials (1 and 4). Our synthetic design is based upon construction of the substituted benzodioxane ring, followed by formation of the flavanonol moiety.

From **Scheme 1**, we can see that in this synthesis of sinaiticin, compound **8** is a key intermediate. Herein, we describe a route of stereoselective synthesis of compound **8**, in which *cis* isomer **6** was converted into *trans* **7** by treatment with K_2CO_3 .

As shown in **Scheme 2**, 4-hydro-benzoaldehyde 1 reacts with mono ethyl malonate to obtain ester 2 which was reduced to afford the corresponding unsaturated alcohol 3^3 . 3 was coupled with 5 which was derived from 4 to give a mixture of isomer 6 (*cis*) and isomer 7 (*trans*)⁴ (*ca.* 1:5 by ¹HNMR), the mixture was stirred in dry DMF with anhydrous K₂CO₃ for 1 hr to get isomer 7 exclusively. The 7 was oxidized with

 $OsO_4/NaIO_4$ to obtain key intermediat compound 8. Synthesis of flavonolignan 10 is in progress.

a: HO₂CCH₂CO₂C₂H₅, Py, Hexahydropyridine, reflux, 95%; b: LiAlH₄, AlCl₃, 90%; c: H₂SO₄, CH₃OH, reflux, 95%; d: K₃Fe(CN)₆, NaOAc; e: K₂CO₃, DMF, then HCl (d, e overall yield 32%); f: OsO₄/NaIO₄, 67%.

Acknowledgments

We are grateful to the National Natural Science Foundation of China for financial support.

References and Notes

- 1. M. A. Afifi, M. M. Ahmed, J. M. Pezzuto and A. D. Kingnorn, *Phytochem*, **1993**, *34*(3), 839.
- 2. H. Tanaka, M. Shibata, K. Ohira and K. Ito, *Chem. Pharm. Bull.*, 1985, 33(4), 1419.
- 3. P. Y. Ding, D. Q. Yu, Chinese J Med Chem, 1995, 5(11), 59.
- 4. S. Antus, E. Baitz-Cass and R. Bauer, *Liebigs. Ann. Chem.*, **1989**, 1147.
- Compound 7: ¹HNMR (400Mz, CD₃CN) δ: -. 62 (d 1H 16Hz H-8'), 7. 32-6. 72 (6H Ar-H), 6. 32 (d 1H 16Hz H-7'), 4. 99 (d 1H 8Hz H-7), 4. 16 (m 1H H-8), 3. 84 (s 3H -COCH₃), 3. 53 and 3. 77 (dd 2H 12Hz 4Hz H-9). Ms (m/z) 342 (M⁺ 45), 324 (43), 282 (25), 205 (27), 132 (76), 107 (100).
- 6. Compound 8: IR (KBr):3470, 3207, 2753, 1743, 1602, 1499cm⁻¹; ¹HNMR (80Mz, CDCl₃) δ:
 9. 86 (s, 1H, CHO), 6. 67-7. 53 (m, 7H, ArH), 5. 10 (d, 1H, 8Hz, H-2), 4. 10 (m, 1H, H-3), 3. 51 and 3. 86 (dd, 2H, 12. 2Hz, 4Hz, -CH₂OH); MS (m/z): 286 (M⁺,100), 268 (67), 149 (29), 107 (22).

Received 23 July 1998

108